刘怀山(教授)

发布者:时振波发布时间:2023-12-01浏览次数:16012


一、基本信息

姓名:刘怀山

性别:男

出生年月:196210

祖籍:山东省寿光市

联系地址:山东省青岛市崂山区松岭238号,邮编266100

中国海洋大学海洋地球科学学院

E-mail lhs@ouc.edu.cn

 

二、简历

1. 学习经历

1979.091983.07,山东海洋学院,海洋地球物理勘探专业,本科/学士

1990.091992.12,青岛海洋大学,海洋地质学,研究生/硕士

1993.091997.06,青岛海洋大学,海洋地质学,研究生/博士

2. 工作简历

1983.071990.08,胜利油田地质调查指挥部研究所,助理工程师、工程师

1992.121993.08,胜利油田地球物理勘探开发公司研究所,高级工程师

1994.021995.05,新加坡东方石油科技公司,地球物理数据处理质量总监

1995.061997.06,胜利油田地球物理勘探开发公司,高级工程师,副总工程师

1997.071998.06,中国石油天然气总公司新区事业部,高级工程师

1998.071999.02,胜利油田和田勘探公司,高级工程师

1999.032000.11,中国海洋大学海洋地球科学学院,高级工程师

2000.122003.07,中国海洋大学海洋地球科学学院,教授

2003.082006.08,中国海洋大学海洋地球科学学院,教授,博导,系副主任

2006.092017.07,中国海洋大学海洋地球科学学院,教授,博导,系主任

2017.07至今,中国海洋大学海洋地球科学学院,教授,博导

2021.07-至今,国家一流专业“勘查技术与工程”建设点负责人

2022.05-至今,海洋油气勘探国家工程研究中心数据采集技术分中心主任

3. 现今学术兼职

2009—至今,Applied Geophysics、石油物探,编委

2015—至今,中国地球物理学会常务理事

2009—至今,中国地球物理学会国家安全地球物理专业委员会副主任委员

2009—至今,全国GIS应用水平考试专家委员副主任委员

2003—至今,SEG(The Society of Exploration Geophysicists, USA)会员

2009—至今,山东省地球物理学会常务理事

2010—至今,青岛市地质学会理事

2013—至今,中国科协科技人才奖项评审专家

2015—至今,国土资源部天然气水合物部重点实验室学术委员会委员

2023—至今,山东省地球物理学会副理事长

4. 国家和省部级科研获奖

中国石油天然气总公司铜牌奖,1991.05

山东省优秀科技工作者,1992.08

中国海洋大学天泰优秀人才奖一等奖,2006.09

山东地学科技创新奖一等奖,2008.12

山东省科技进步奖贰等奖,2011.01

山东省优秀学位论文指导教师,2011.07

中国石油和化学工业联合会科技进步奖三等奖,2010.10

山东省研究生教育省级教学成果三等奖,2009.12

中国地球物理科学技术奖二等奖,2014.10

中国海洋大学第七届本科教学优秀奖一等奖,2016.09

中国地球物理科学技术奖二等奖,2017.10

中国海洋工程科学技术奖二等奖,2018.02

中国石油和化学工业联合会技术发明奖一等奖,2018.07

教育部高等学校科学研究优秀成果奖(科学技术)技术发明奖二等奖,2021.03

山东省科学技术奖科技进步奖二等奖,2022.12

中国海洋大学最美教师,2023.09

5. 主持的重要科研项目

[1] 滩浅海检波器耦合研究,863(2001AA602018-1)计划,2001--2003,项目主持人

[2] 现代海底沉积结构调查方法试验,863(2001AA602018-2)计划,2001--2003,项目主持人

[3] 桩海地区现代海洋沉积结构调查方法研究,863计划,2003--2004,项目主持人

[4] 浅海地震资料特殊干扰波形成机理与剔除方法,863(2006AA09Z339)计划,2006—2009,项目主持人

[5] 随钻地震信号处理技术(随钻地震技术(RVSP)研究,8632006AA06A108-1) 计划,2007--2011,项目主持人

[6] 基于共反射面元的天然气水合物渗透特征研究(南海北部天然气水合物的地球物理异常特征研究)973计划(2009CB219505-1)2009--2013,项目主持人

[7] 基于海洋地震学的近海海洋水体特性研究(41176077),国家自然科学基金,              2012--2015,项目主持人

[8] 海底顶层电火花源立体探测系统及其成像基础研究(41230318),国家自然科学重点基金,2013--2017

[9] 天然气水合物赋存区立体探测技术,国家863重大项目(2013AA09250102),2013--2016,项目主持人

[10] 渤海海峡跨海通道地壳稳定性调查与评价(高分辨率地震测量)GZH201200504(海洋地质保障工程)2013--2015,项目主持人

[11] 综合地球物理服务,国家专项,2016--2017,项目主持人

[12] 中深层宽频气枪震源子波模拟研究(2016ZX05024001-002),国家科技重大专项,2016--2020,项目主持人

[13] 近海底地震海洋学立体探测与成像基础研究(91958206),国家自然科学重点基金,2020—2024,项目主持人

[14] 西太平洋复杂地形对能量串级和物质输运的影响及作用机理重大科学考察项目(航次编号:NORC2021-582)(42049582),国家自然科学基金科学航次,2020--2024,项目首席科学家

[15] 渤中凹陷东南环浅层砂体描述及流体检测关键技术研究及应用,中海石油(中国)有限公司,2021--2022,项目主持人

[16] 深层地震采集震源优化及观测系统设计研究,中海石油(中国)有限公司,2021--2022,项目主持人

[17] 国产软件示范性应用(2022YFC2808305),国家重点研发计划课题,2022--2025,课题主持人

6. 国家发明专利及计算机软件著作权

[1] 高精度海洋地震勘探数据采集系统,2012.05.02,ZL 2009 1 0231528.9

[2] 高分辨率海洋地震勘探多道数字拖缆,2011.07.20,ZL 2009 1 0019112.0

[3] 高精度海洋地震勘探垂直缆,2016.11.23,ZL 2016 1 0015990.5

[4] 拖曳式海洋地震勘探垂直缆数据采集系统,2016.11.23,ZL 2015 1 1033227.7

[5] 一种基于地震海洋学的海水物性测量方法,2017.02.22,ZL 2015 1 1031582.0

[6] 海洋高分辨率立体调相震源,2019.06.25,ZL 2016 1 1267565.1

[7] 海洋高分辨率立体垂直能量组合电火花震源,2017.05.06,2017 1 0314697.3

[8] 海洋高分辨率立体垂直时延电火花震源,2017.05.06,2017 1 0314703.5

[9] 一种海洋地震勘探拖缆绞车仓, 2023.04.07,2017 1 1107594.6

[10] 一种可自动调节的海洋地震勘探拖缆绞车,2023.06.30,2017 1 1108174.X

[11] 一种地震勘探气枪阵列远场子波模拟方法、脸谱评价方法及装置,2021.06.29,2019 1 0792213.5

[12] 基于小样本学习的卷积神经网络地震测井联合反演方法,2021.03.30,2019 1 0777042.9

[13] 用于极浅海域地层横波速度结构探测的光纤多道地震系统,2021.07.30,  2020 1 1065754.7

[14] 一种天然气水合物储层信息评估方法及其应用,2022.6.3,2020 1 0653235.6

[15] 一种基于海浪谱的起伏海面地震波场数值数据模拟方法,2022.5.27,2020 1 0535639.5

[16] 一种参数匹配虚反射压制的方法、海上地震勘探系统,2022.2.11,2020 1 0535655.4

[17] 一种模拟退火虚反射压制的方法、海上地震勘探系统,2022.2.11,2020 1 0535634.2

[18] 压制强能量海面鬼波的FTX处理方法、存储介质、处理终端, 2023.6.30, 2021 1 1300278.7

[19] PCT/CN2022/099062,一种观测系统排列长度选择方法,2022.06.16

[20] PCT/CN2022/099328,一种面向多目标的观测系统及其设计方法,2022.06.17

[21] PCT/CN2022/099111,一种海洋可控编码气枪震源以及设计方法,2022.06.13

[22] 浅水条件下でのプラズ震源高精度測定装置,2023.3.2,特許第7273429

[23] 浅海地震资料特殊干扰波剔除处理软件V1.02010SR0167222010.04.14

[24] 随钻地震数据处理软件V1.0,2010SR046780,2010.06.18

[25] 海洋地震勘探数字记录坐标信息提取软件V1.0,2012SR112961,2012.11.23

[26]海洋重力数据现场处理软件V1.0,2012SR112964,2012.11.23

[27] 海上地震采集模拟软件V1.0,2013SR111765,2013.10.22

[28] 均衡伪多道海底电缆双检合成软件V1.0,2013SR104066,2013.04.02

[29] 海洋调查文件处理软件V1.0,2013SR124737,2013.06.25

[30] 数字检波器与模拟检波器地震记录分析软件V1.0,2013SR106266,  2013.05.10

[31] 地震海洋学-水体特征分析软件V1.0,2014SR129034,2014.06.17

[32]  S变换时频分析软件V1.0,2014SR131798,2014.06.17

[33] 基于SIMO系统地震子波提取分析软件V1.0,2014SR145049,2014.06.19

[34] 基于高阶统计量地震子波提取软件V1.0,2015SR215683,2015.07.20

[35] 基于小波变换的地震资料时频分析软件V1.0,2016SR315801,2016.07.15

[36] 基于Radon变换的海洋垂直缆多次波压制软件V1.0,2017SR019831,  2016.07.01

[37] 海上立体观测系统分析软件V1.0,2017SR051086,2016.11.17

[38] 单炮地震记录初至拾取软件V1.0,2017SR345888,2017.02.18

[39] 基于地震记录的Q值估计软件V1.0,2017SR346773,2017.03.03

[40] TOPASPS18浅剖数据处理软件V1.0,2017SR429553,2017.03.10

[41] 气枪子波模拟及脸谱评价软件V1.0,2019SR0067178,2019.1.18

[42] 含水合物层纵横波速度及衰减数值模拟软件V1.0,2021SR1670590,  2021.11.09

[43] 海洋多道地震拖缆姿态拟合软件V1.0,2020SR0241732,2020.03.11

[44] 无井约束高分辨率地震混和反演软件V1.0,2021SR0135486,2021.01.25

[45] 水平井随钻地震压力预测系统软件V1.0,2021SR0257672,2021.02.19

 

三、主要学术领域

1. 学科方向:地球物理勘探、海洋地球物理学、天然气水合物探测

2. 应用基础:地球物理

3. 近期研究:创新研制开发了海底高精度立体探测与成像透视系统。该系统基于地震海洋学理论,突破了高分辨率气枪和大能量电火花立体组合和编码震源,构建了水平缆、垂直缆等海水与近海底地层结构目标的最佳立体探测技术和方法,成功研发出具有自主知识产权的系列关键技术与装备。比现有海洋地震探测系统效能提升3-5倍、探测精度提升5-10倍,可用于深海近海底高精度天然气水合物和油气资源勘探、海洋环境灾害地质风险评估、海上或海底通道预选址等重大工程,尤其在对水下移动目标高精度探测、超视距水地声通信和近海底高精度成像等国防技术领域有广阔的应用空间,现已实现了规模化应用,达到了国际领先水平。

四、主要论文和论著目录

1)主要论著

[1] 刘怀山,王克斌,童思友等译.地震资料分析--地震资料处理、反演和解释(上册).北京:石油工业出版社,2006.8

[2] 刘怀山,曹孟起,张进等译.地震资料分析--地震资料处理、反演和解释(下册).北京:石油工业出版社,2006.8

[3] 刘怀山译.储层地震学.北京:石油工业出版社,2009.12

[4] 阎世信,刘怀山,姚雪根编著.山地地球物理勘探技术.北京:石油工业出版社,2000.6

[5] 苏朝光,刘怀山,金强,张营革,高秋菊著.地层油气藏勘探以济阳坳陷为例.青岛:中国海洋大学出版社,2011.1

2)主要论文

[1] Study On Air Gun Wavelet Characteristics Under Different Source and Towed-Streamer Sinking Depths in the Bohai Sea. Ocean Engineering. 270, 113654.doi.org/10.1016/j.oceaneng.2023.113654

[2] Numerical study on mechanical properties and instability characteristics of sandy reservoir containing hydrate   interlayer. Ocean Engineering,2023,286,/10.1016/j.oceaneng.2023.115694

[3] Target-oriented waveform inversion based on Marchenko redatumed data. GEOPHYSICS,2023,88(1). /10.1190/geo2021-0669.1

[4] Acoustic field characteristics of seismic surveys in the shallow water environment of the Bohai Sea. Geophysical Prospecting,2023(1),/10.1111/1365-2478.13341

[5] Application of deconvolution interferometry to receiver ghost reflection in vertical cable seismic survey. Geophysical Prospecting,2023(1),/10.1111/1365-2478.13342

[6] A fast wavefield reconstruction inversion solution in the frequency domain. GEOPHYSICS,2023,88(3),/10.1190/geo2022-0023.1

[7] High-efficiency and high-precision seismic trace interpolation for irregularly spatial sampled data by combining an  extreme gradient boosting decision tree and principal component analysis. Geophysical Prospecting,2022(8),/10.1111/1365-2478.13270

[8] Quantitative prediction of ultra-deep tight sandstone fractures based on the theory of minimum energy dissipation. Geoenergy Science and Engineering,2023,226,doi.org/10.1016/j.geoen.2023.211749

[9] Random noise attenuation of ocean bottom seismometers based on a substep deep denoising autoencoder. Geophysical Prospecting,2022(11)./10.1111/1365-2478.13302

[10] A first-arrival wave recognition method based on the optimal dominant energy spectrum. Geophysical Prospecting,2022(11),/10.1111/1365-2478.13297

[11] Spatial Effect Analysis of Coal and Gangue Recognition Detector Based on Natural Gamma Ray Method. Natural Resources Research,2022,1,  /doi.org/10.1007/s11053-022-10016-z

[12] Discrete element simulation analysis of damage and failure of hydrate bearing sediments. Journal of Natural Gas Science and Engineering,2022102,/doi.org/10.1016/j.jngse.2022.104557

[13] A new method for OBS relocation using direct water‑wave arrival times from a shooting line and accurate  bathymetric data. Marine Geophysical Research,2022,43(20), /doi.org/10.1007/s11001-022-09482-0

[14] Time domain Wavefield Reconstruction Inversion Based on Unbalanced Optimal Transport. IEEE Transactions on Geoscience and Remote Sensing,2022.3210576,        /10.1109/TGRS.2022.3210576

[15] Hydrate-Bearing Sediment Imaging of Ghost Reflection in Vertical Cable Seismic Data Using Seismic Interferometry. Geofluids,2022,doi.org/10.1155/2022/3501755

[16] Time-Domain Wavefield Reconstruction Inversion Solutions in the Weighted Full Waveform Inversion Form. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING202260/doi.org/10.1109/TGRS.2022.3224383

[17] Spatial-Domain Synchrosqueezing Wavelet Transform and Its Application to Seismic Ground Roll Suppression. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING,2022,60,/10.1109/TGRS.2022.3210606

[18] Ground roll intelligent suppression based on spatial domain synchrosqueezing wavelet transform convolutional  neural network. Geophysical Prospecting,2022,(8),/10.1111/1365-2478.13271

[19] 时空域同步挤压小波变换联合面波压制方法.地球物理学报,2022,65(9),doi.org/10.6038/cjg2022P0724

[20] Shallow water body data processing based on the seismic oceanography. Journal of Ocean University of Qingdao,2013,12(3),doi.org/10.1007/s11802-013-2100-5

[21] AVO Character Research of Natural Gas Hydrate in the East China Sea. Journal of Ocean University of Qingdao,2009,8(3), /10.1007/s11802-009-0270-y

[22] The Sensitive Properties of Hydrate Reservoirs Based on Seismic Stereoscopic Detection Technology. ACTA GEOLOGICA SINICAENGLISH EDITION,2020,94(2),10.1111/1755-6724.14305

[23] Potentials of low permeability gas in intracratonic basin: Insights from sedimentary facies of the Shan1 member in the Su6‐Zhao42 area of the Sulige gas field, Ordos Basin. Geological Journal ,2018,S1,doi.org/10.1002/gj.3056

[24] Facial characteristics of air gun array wavelets in the time and frequency domain under real conditions. Journal of Applied Geophysics,2022,1,/10.1016/j.jappgeo.2022.104591

[25] Reverse Time Migration of Vertical Cable Seismic Data to Image Hydrate Bearing Sediments With High Resolution. Frontiers in Earth Science,2021,1,doi.org/10.3389/feart.2021.751202

[26] Simulating the signature produced by a single airgun under real gas conditions. Applied Geophysics ,2014,11(1),doi.org/10.1007/s11770- 014-0408-6

[27] Seismic Low-Frequency Shadow beneath Gas Hydrate in the Shenhu Area Based on the Stereoscopic Observation System. JOURNAL OF EARTH SCIENCE,2018,3,//doi.org/10.1007/s12583-017-0807-8

[28] Application of seismic interferometric migration for shallow seismic high precision data processing: A case study in the Shenhu area. JOURNAL OF OCEAN UNIVERSITY OF CHINA,2018,1,doi.org/10.1007/s11802-018-3456-3

[29] Pre-drilling prediction techniques on the high temperature high-pressure hydrocarbon reservoirs offshore Hainan Island, China. JOURNAL OF OCEAN UNIVERSITY OF CHINA,2018,1,doi.org/10.1007/s11802-018-3488-8

[30] Upper crustal structure beneath the northern South Yellow Sea revealed by wide-angle seismic tomography and joint interpretation of geophysical data. Geological Journal ,2016,S1,://doi.org/10.1002/gj.2847

[31] Facial Features of an Air Gun Array Wavelet in the Time-Frequency Domain Based on Marine Vertical Cables. J. Ocean Univ. China ,2021,20(6),doi.org/10.1007/s11802-021-4527-4

[32] Simulation and verification of an air-gun array wavelet in time frequency domain based on van der waals gas equation. APPLIED GEOPHYSICS,2020,17(5-6), doi.org/10.1007/s11770-020-0874-y

[33] Research on the Construction of a Petrophysical Model of a Heterogeneous Reservoir in the Hydrate Test Area in the Shenhu Area of the South China Sea (SCS). Geofluids,2021,1,doi.org/10.1155/2021/5586118

[34] Seismic Acquisition Parameters Analysis for Deep Weak Reflectors in the South Yellow Sea. J. Ocean Univ. China,201615(5),doi.org/10.1007/s11802-016-2978-9

[35] Seismic stratigraphy of the quaternary Yellow River delta, Bohai Sea, eastern China. Mar Geophys Res,200829(1),doi.org/10.1007/s11001-008-9043-z

[36] Phase Characteristic Analysis of Continuous Depth Air-Gun Source Wavelet. J. Ocean Univ. China2016,15(5),doi.org/10.1007/s11802-016-3167-6

[37] Enlightenment of the Mariana Fore Arc Sedimentary Basin Evolution to the Subduction Process Study. ACTA GEOLOGICA SINICA 2021,1,doi.org/10.1111/1755-6724.14860

[38] Estimation of S-wave Velocity for Gas Hydrate Reservoir in the Shenhu Area, North South China Sea. JOURNAL OF OCEAN UNIVERSITY OF CHINA,2018,5,  doi.org/10.1007/s11802-018-3676-6

[39] Velocity anisotropy characteristics and prestack time migration imaging of the marine sedimentary strata in the South Yellow Sea Basin. STUDIA GEOPHYSICA ET GEODAETICA,2018,3,doi.org/10.1007/s11200-016-1034-y

[40] Sensitivity analysis of P-waves and S-waves to gas hydrate in the Shenhu area using OBS. JOURNAL OF OCEAN UNIVERSITY OF CHINA,2018,1,/10.1007/s11802-018-3587-6

[41] Recovery of the Erosion Thickness and Characterization of the Paleogeomorphology in the Southern Lishui Sag, East China Sea Shelf Basin. JOURNAL OF OCEAN UNIVERSITY OF CHINA,2020,19(2),/10.1007/s11802-020-3957-8

[42] Strong noise attenuation method based on the multiuser kurtosis criterion. Applied Geophysics,2013,10(1),/10.1007/s11770-013-0365-5

[43] Ocean-bottom cable data multiple suppression based on equipoise pseudo multichannel matching filter. Applied Geophysics,2015,12(2),  /10.1007/s11770-015-0489-9

[44] Estimation of Elastic Parameters Using Two-Term Fatti Elastic Impedance Inversion. Journal of Earth Science,2015,6(4),  /10.1007/s12583-015-0564-5

[45] Retrieving Drill Bit Seismic Signals Using Surface Seismometers. Journal of Earth Science,2015,6(4),/10.1007/s12583-015-0568-1

[46] Notch Effect and Frequency Compensation of Dual-Sensor OBC Data in Shallow Water. Journal of Earth Science,2015,26(4),/10.1007/s12583-015-0559-2

[47] Analysis of Water Features in Gas Leakage Area. Journal of Geological Research,2011 (5). doi:10.1155/2011/525781

[48] Ellipse evolving common reflection point velocity analysis and its application to oil and gas detection. Journal of Geophysics and Engineering,2009,6(1),      /10.1088/1742-2132/6/1/006

[49] 椭圆展开共反射点叠加方法的应用研究.地球物理学报,2009,52(1),//doi.org/10.1002/cjg2.1343

[50] 双参数展开CRP叠加和速度分析方法研究.地球物理学报,2009,52(7), /10.3969/j.issn.0001-5733.2009.07.023