姜兆霞(副主任、教授)

发布者:时振波发布时间:2023-12-01浏览次数:14528

一、 基本信息

 

姓名:姜兆霞

性别:

籍贯:山东省临沂市

联系地址:山东省青岛市崂山区松岭路238

邮编:266100

E-mail: jiangzhaoxia@ouc.edu.cn

 

二、 简历

 

1、 学习经历

 

2008.08-2014.07中国科学院地质与地球物理研究所,地球动力学,硕博连读

2004.09-2008.07  中国海洋大学,勘查技术与工程,学士学位

 

2、 工作经历

2025.1-至今    中国海洋大学,筑峰三层次教授

2019.09-2024.12  中国海洋大学,英才一层次教授

2020.01-至今 中国海洋大学,博士生导师

   2017.12-2019.08 中国海洋大学,副教授

2014.06-2017.11 中国科学院地质与地球物理研究所,博士后

2015.10-2016.10 澳大利亚国立大学,访问学者

2012.06-2012.07 法国艾克斯-马赛大学 访问学者

2012.05-2012.08 意大利Molise大学  访问学者

2009.10-2010.01 西班牙Córdoba大学 访问学者

 

3、 学术兼职

中国地质学会古地磁专业委员会委员

Geosystems and Geoenvrionment》副主编

《海洋学研究》编委

《中国海洋大学学报》英文版青年编委

美国地球物理学会(AGU),会员

中国地球科学联合会(CGU),会员

ScienceGeologyEPSLGeophysical Research LettersJournal of Geophysical Research-Solid EarthQSRTectonicsGlobal and Planetary Change Chemical GeologyMarine Geology中国科学科学通报地球物理学报《第四纪研究》等期刊审稿人

 

4、 主要科研项目

 

1国家自然科学基金面上项目,“红层的重磁化机制:实验模拟与天然样品综合研究”(42274089),2023.01-2026.12,主持

2)山东省杰出青年基金,“古地磁学”(ZR2022JQ16),2023.01-2025.12,主持

3) 中国海洋大学校杰青培育项目“海洋磁学”,  2023.01-2025.12,主持

3国家自然科学基金-优秀青年基金,古地磁学41922026),2020.01-2022.12主持

4)国家自然科学基金创新群体项目,“海底古地貌动态重建”(42121005),2022.01-2026.12,项目骨干

5)国家自然科学基金重大研究计划培育项目,夏威夷-皇帝海山链运动学过程研究91858108),2019.01-2021.12,主持

6) 中国海洋大学国家优秀青年基金培育项目“地磁学”(201941007),  2019.01-2021.12,主持

7)国家自然科学基金青年基金项目,华南红层的重磁化机制研究415040552015.01-2018-12主持

8)中国博士后基金一等资助,赤铁矿碎屑剩磁倾角浅化机制研究” (2014M560112),2014.09-2016.12主持

9)中国博士后基金特别资助,应用红层构建地磁场相对强度的可行性研究”  2015T80131),2015.09-2017.12主持

 

5、 主要的科研奖励

2024山东省自然科学二等奖(第一完成人)

2023山东省泰山学者青年专家

2023中国地球物理学会傅承义青年科技奖

2019年 国家优秀青年科学基金

2019中国海洋大学青年英才一层次

2019年 中国海洋大学天泰优秀人才奖

2017年 中国海洋大学青年英才三层次

2015年 中国科学院优秀博士论文奖

2014年 中国科学院院长特别奖

2010年 中国地球物理年会优秀论文奖/指南针奖

 

三、 主要学术领域

 

1、 学科方向:海洋地质学、古地磁学

 

2、 近期研究兴趣:

 

1) 海底构造磁学研究:依托古地磁方法,以洋底基岩样品为研究载体,建立传统岩石矿物学与古地磁学相结合的综合研究体系,多尺度(从宏观到微观尺度)、多参数(矿物结构、成分、磁学性质等)研究基岩的形成过程及其记录的古地磁场信息。从古地磁学、岩石学、矿物学等多角度剖析太平洋、印度洋及洋陆过渡带地区的构造过程。 

2) 海洋古气候演化研究:利用磁性地层学手段,为海洋沉积物建立可靠的年龄框架。在此基础上,依托传统的古地磁学方法和技术,将磁性矿物的形成过程和载磁机理、赋存状态相结合,以此反演海洋环境变化与源-汇过程,开展海洋古气候演化的综合研究。

 

四、 主要论文目录

 

1、论文收录情况:已发表论文100篇,被SCI收录80余篇,其中第一作者及通讯作者论文近30篇。

 

2、代表性文章列表如下:

 

第一作者/及通讯作者文章

[1] Zhang, Y.Z., Jiang, Z.X.*, Su, K., Dekkers, M. J., Li, S., & Liu, Q., 2025. Magnetic characteristics of highly serpentinized peridotite in the Iberia Abyssal plain and implications for marine magnetic anomalies. Geochemistry, Geophysics, Geosystems, 26(2), e2024GC012035.

[2] Zhou, L., Jiang, Z.X.*, J. C. Larrasoaña, S. Li, Q. Liu, L. Chen, Z. Yin, W. Liu, Y. Guan, Y. Zhang and Y. Hu, 2024. Aridity record of the Arabian Peninsula for the last 200 kyr: Environmental magnetic evidence from the western equatorial Indian ocean. Quaternary Science Reviews 341: 108876.

[3] Sun, Q., Jiang, Z.X.*, C. Xiao, L. Chen, W. Liu, K. He, Y. Guan, Y. Zhang, H. Wang, L. Chen, Z. Yin and S. Li, 2024. Magnetic Fingerprints for the Paleoenvironmental Evolutions Since the Last Deglaciation: Evidence from the Northwestern South China Sea Sediments. Paleoceanography and Paleoclimatology 39(3): e2023PA004732. 

[4] Guan, Y., Jiang, Z.X.*, S. Li, L. Chen, Y. Liu, Y. Chen, Y. Zhang, L. Chen, L. Zhou and Z. Yin (2024). Magnetic Response to the Source-To-Sink Environmental Changes in the Bay of Bengal Since 60 ka. Paleoceanography and Paleoclimatology 39(5): e2024PA004857

[5] Jiang, ZX*, Liu, Q., Roberts, A.P., Dekkers, M.J., Barrón, V., Torrent, J. and Li, S., 2022. The magnetic and color reflectance properties of hematite: from Earth to Mars. Reviews of Geophysicse2020RG000698.

[6] Jiang, ZX*, Li, S., Liu, Q., Zhang, J., Zhou, Z. and Zhang, Y., 2021. The trials and tribulations of the Hawaii hot spot model. Earth-Science Reviews, 215: 103544.

[7] Jiang ZX*, Jin, C., Wang, Z., Liu, Q.*, Li, S. and Yao, Z., 2020. Chronostratigraphic framework of the East China Sea since MIS 6 from geomagnetic paleointensity and environmental magnetic records. Global and Planetary Change, 185: 103092.

[8] Jiang ZX, Liu, QS, Roberts, A.P., Barrón, V., Torrent, J., Zhang, Q., 2018. A new model for transformation of ferrihydrite to hematite in soils and sediments. Geology, https://doi.org/10.1130/G45386.1

[9] Jiang ZX, Liu QS, Dekkers MJ, Zhao X, Roberts AP, Yang ZY, Jin CS, Liu JX, 2017. Remagnetization mechanisms in Triassic red beds from South China. Earth and Planetary Science Letters 479, 219-230.

[10] Jiang ZX, Liu QS, Zhao X, Roberts AP, Heslop D, Barrón V, Torrent J, 2016. Magnetism of Al-magnetite reduced from Al-hematite, Journal of Geophysical Research, 121, doi:10.1002/2016JB012863.

[11] Jiang ZX, Liu QS, Dekkers MJ, Barrón V, Torrent J, Roberts AP, 2016. Control of Earth-like magnetic fields on the transformation of ferrihydrite to hematite and goethite, Scientific Reports, 6, doi:10.1038/srep30395.

[12] Jiang ZX, Liu QS, Dekkers MJ, Tauxe L, Qin HF, Barrón V, Torrent J, 2015. Acquisition of chemical remanent magnetization during experimental ferrihydrite–hematite conversion in Earth-like magnetic field—implications for paleomagnetic studies of red beds, Earth and Planetary Science Letters, 428:1-10

[13] Jiang ZX, Liu QS, Zhao XY, Jin CS, Liu CC, Li SH, 2015. Thermal magnetic behaviour of Al-substituted haematite mixed with clay minerals and its geological significance. Geophysical Journal International, 200(1):130-143

[14] Jiang ZX, Liu QS, Colombo C, Barrón V, Torrent J2014. Quantification of Al-goethite from diffuse reflectance spectroscopy and magnetic methods, Geophysical Journal International, 196, 131-144.

[15] Jiang ZX, Liu QS, Dekkers MJ, Colombo C, Yu YJ, Barrón V, Torrent J, 2014. Ferro and antiferromagnetism of ultrafine-grained hematite. Geochemistry, Geophysics, Geosystems, 15(6), 2699-2712

[16] Jiang ZX, Rochette P, Liu QS, Gattacceca J, Yu YJ, Barrón V, Torrent J, 2013. Pressure demagnetization of synthetic Al substituted hematite and its implications for planetary studies, Physics of Earth and Planetary Interiors, 224, 1-10.

[17] Jiang ZX, Liu QS, Barrón V, Torrent J, 2012, Magnetic discrimination between Al-substituted hematites synthesized by hydrothermal and thermal dehydration methods and its geological significance, Journal Geophysical Research, 117, B02102, doi:10.1029/2011JB008605

[18] Jiang ZX, Liu QS, 2012. Magnetic characterization and paleoclimatic significances of late Pliocene-early Pleistocene sediments at site 882A, northwestern Pacific Ocean, Science in China, 55, 323-331.

[19] Hu, Y., Zhang, J., Jiang ZX*, Li, Y. and Li, S., 2022. Influence of the oceanic crust structure on marine magnetic anomalies: Review and forward modelling. Geological Journal, 2022: 1-14.

[20] Chen, L., Guan, Y., Zhou, L., YIN, Z. and Jiang ZX*, 2022. Variability of Indian Monsoon and its forcing mechanisms since late Quaternary. Frontiers in Earth Science, 10: 977250. doi: 10.3389/feart.2022.977250.

[21] 姜兆霞*,李三忠,索艳慧,吴立新,2024. 海底氢能探测与开采技术展望. 地学前缘,3104):183-190

[22] 章钰桢, 姜兆霞*, 李三忠, 王誉桦,于雷, 2022. 大洋橄榄岩的蛇纹石化过程:从海底水化到俯冲脱水. 岩石学报, 38(4): 1063-1080.

[23] 陈龙,陈亮,殷征欣,官玉龙,章钰桢,姜兆霞*2022. 晚更新世以来南海中央海盆沉积物的磁学特征:对物源和东亚季风演化的指示.地球物理学报doi10.6038/cjg2022Q0418

[24] 姜兆霞*, 李三忠, 刘青松, 张建利章钰桢, 2019. 夏威夷-皇帝海山链成因机制古地磁学约束. 海洋地质与第四纪地质, 39(5): 104-114.

[25] 肖春凤,孙启顺,陈亮,殷征欣,陈龙,官玉龙,章钰桢姜兆霞*2023. 南海西北部16 kaBP以来沉积物的环境磁学特征及其物源指示意义. 海洋地质与第四纪地质 43:13-26.

[26] 官玉龙,陈亮,姜兆霞*,李三忠,肖春凤陈龙2022. 东北印度洋源汇过程及古环境与古季风演化. 地学前缘 29:102-118

[27] 姜兆霞, 刘青松, 2016. 赤铁矿的定量化及其气候意义. 第四纪研究, 36, 676-689.

[28] 姜兆霞, 刘青松, 2012. 影响赤铁矿中铝替代量的因素及其环境意义探讨, 第四纪研究, 32(004): 608-614

[29] 姜兆霞,刘青松, 2011.上新世末期-更新世早期西北太平洋ODP882A孔沉积物的磁学特征及其古气候意义.中国科学:地球科学411242-1252

 

非第一作者/通讯作者文章

 

[30] Chou, Y.-M., Jiang, X., Liu, Q., Hu, H.-M., Wu, C.-C., Liu, J., et al. (2018). Multidecadally resolved polarity oscillations during a geomagnetic excursion. Proceedings of the National Academy of Sciences, 115(36), 8913–8918. https://doi.org/10.1073/pnas.1720404115

[31] Li, J. X., Yue, L. P., Roberts, A. P., Hirt, A. M., Pan, F., Guo, L., et al. (2018). Global cooling and enhanced Eocene Asian mid-latitude interior aridity. Nature Communications, 9(1), 3026. https://doi.org/10.1038/s41467-018-05415-x

[32] Li, S., Li, X., Zhou, J., Cao, H., Liu, L., Liu, Y., et al. (2022). Passive magmatism on Earth and Earth-like planets. Geosystems and Geoenvironment, 1(1), 100008. https://doi.org/10.1016/j.geogeo.2021.10.003

[33] Liu, Y., Li, S., Jiang, S., Liu, J., Chen, Y., Jiang, Z., et al. (2023). Origin of microplates under oblique subduction system in New Guinea: Inferences from gravity and magnetic data. Gondwana Research, 120, 175–189. https://doi.org/10.1016/j.gr.2022.09.001

[34] Yuan, J., Jiang, Z., Huang, W., Liu, C., Tsering, T., Zhang, S., et al. (2025). Isolation of primary remanent magnetization from Himalayan rocks: Insights from partially remagnetized Upper Cretaceous oceanic red beds in southern Tibet, China. Journal of Geophysical Research: Solid Earth, 130, e2024JB029750. https://doi.org/10.1029/ 2024JB029750

[35] He, K., Zhao, X., Jiang, Z., & Li, S. (2024). Paleoenvironmental controls on the abundances of magnetofossils in the southwestern Iberian margin. Journal of Geophysical Research: Solid Earth, 129,e2023JB027983. https://doi.org/10.1029/2023JB027983

[36] Cao, W., Liu, Q. S., Jiang, Z., Zhong, Y., Gai, C., Wang, H., & Wang, D. (2024). Semiquantification of the calcium carbonate in marine sediments by visible and nearinfrared diffuse reflectance spectroscopy. Geochemistry, Geophysics, Geosystems, 25, e2023GC011370. https:// doi.org/10.1029/2023GC011370

[37] Li S., Liu L., Suo Y., Li X., Zhou J., Jiang Z., et al. (2023). Carbon Tectonics: A new paradigm for Earth system science. Chinese Science Bulletin, 68(4), 309–338. https://doi.org/10.1360/TB-2022-0741

[38] Liu, J., Li, S., Cao, X., Dong, H., Suo, Y., Jiang, Z., et al. (2023). Back‐Arc Tectonics and Plate Reconstruction of the Philippine Sea‐South China Sea Region Since the Eocene. Geophysical Research Letters, 50(5), e2022GL102154. https://doi.org/10.1029/2022GL102154

[39] Liu, J., Cao, X., Suo, Y., Zhang, R., Jiang, Z., Zhou, J., et al. (2023). Subduction-derived microplates: Complex evolution of the footwall in the subduction system. Tectonophysics, 862, 229972. https://doi.org/10.1016/j.tecto.2023.229972

[40] Jin, C.-S., Xu, D., Li, M., Hu, P., Jiang, Z., Liu, J., et al. (2023). Tectonic and orbital forcing of the South Asian monsoon in central Tibet during the late Oligocene. Proceedings of the National Academy of Sciences, 120(15), e2214558120. https://doi.org/10.1073/pnas.2214558120

[41] Zhang, Y., Xu, J., Li, G., Lu, Z., Jiang, Z., Zhang, W., & Liu, Y. (2023). ENSO-like evolution of the tropical Pacific climate mean state and its potential causes since 300ka. Quaternary Science Reviews, 315, 108241. https://doi.org/10.1016/j.quascirev.2023.108241

[42] Zhong, Y., Lu, Z., Wilson, D. J., Zhao, D., Liu, Y., Chen, T., et al. (2023). Paleoclimate evolution of the North Pacific Ocean during the late Quaternary: Progress and challenges. Geosystems and Geoenvironment, 2(1), 100124. https://doi.org/10.1016/j.geogeo.2022.100124

[43] Sheng, M., Jiang, K., Wang, X., Jiang, Z., Tang, L., & Zhou, Z. (2023). Magnetoclimatological Record of Late Pleistocene Loess in the Southern Hunshandake Sandy Land, Inner Mongolia: A Threshold Response to the East Asian Summer Monsoon Variations. Geochemistry, Geophysics, Geosystems, 24(7), e2023GC010905. https://doi.org/10.1029/2023GC010905

[44] Wang, G., Xu, J., Jiang, Z., Li, G., Zhang, Y., Zhang, W., & Liu, Y. (2023). Precipitation variations of western equatorial pacific during glacial–interglacial cycles since MIS8: Evidence from multi–proxies of abyssal sediment. Frontiers in Earth Science, 10, 1092686. https://doi.org/10.3389/feart.2022.1092686

[45] Zhang, R., Li, S., Suo, Y., Liu, J., Cao, X., Zhou, J., et al. (2022). A forearc pull-apart basin under oblique arc-continent collision: Insights from the North Luzon Trough. Tectonophysics, 837, 229461. https://doi.org/10.1016/j.tecto.2022.229461

[46] Zhong, Y., Shi, X., Yang, H., Wilson, D. J., Hein, J. R., Kaboth-Bahr, S., et al. (2022). Humidification of Central Asia and equatorward shifts of westerly winds since the late Pliocene. Communications Earth & Environment, 3(1), 274. https://doi.org/10.1038/s43247-022-00604-5

[47] Zhou, Z., Han, Z., Li, S., Jiang, Z., Li, X., & Lan, H. (2022). Kinematic reconstruction of the Raohe accretionary complex, Northeast China: Integration of onshore geologic evidence and global plate model. Journal of Geodynamics, 149, 101895. https://doi.org/10.1016/j.jog.2021.101895

[48] Cao, W., Qing, H., Xu, X., Liu, C., Chen, S., Zhong, Y., et al. (2022). Pre-Archaeological Investigation by Integrating Unmanned Aerial Vehicle Aeromagnetic Surveys and Soil Analyses. Drones, 6(9), 243. https://doi.org/10.3390/drones6090243

[49] Cao, W., Jiang, Z., Gai, C., Barrón, V., Torrent, J., Zhong, Y., & Liu, Q. (2022). Re-Visiting the Quantification of Hematite by Diffuse Reflectance Spectroscopy. Minerals, 12(7), 872. https://doi.org/10.3390/min12070872

[50] Jiang, X. D., Zhao, X. Y., Zhao, X., Jiang, Z. X., Chou, Y. M., Zhang, T. W., et al. (2021). Quantifying Contributions of Magnetic Inclusions Within Silicates to Marine Sediments: A Dissolution Approach to Isolating Volcanic Signals for Improved Paleoenvironmental Reconstruction. Journal of Geophysical Research: Solid Earth, 126(10), e2021JB022680. https://doi.org/10.1029/2021JB022680

[51] Roberts, A. P., Zhao, X., Hu, P., Abrajevitch, A., Chen, Y., Harrison, R. J., et al. (2021). Magnetic Domain State and Anisotropy in Hematite ( α ‐Fe 2 O 3 ) From First‐Order Reversal Curve Diagrams. Journal of Geophysical Research: Solid Earth, 126(12), e2021JB023027. https://doi.org/10.1029/2021JB023027

[52] Wang, P., Li, S., Suo, Y., Guo, L., Santosh, M., Li, X., et al. (2021). Structural and kinematic analysis of Cenozoic rift basins in South China Sea: A synthesis. Earth-Science Reviews, 216, 103522. https://doi.org/10.1016/j.earscirev.2021.103522

[53] Roberts, A. P., Zhao, X., Heslop, D., Abrajevitch, A., Chen, Y.-H., Hu, P., et al. (2020). Hematite (α-Fe2O3) quantification in sedimentary magnetism: limitations of existing proxies and ways forward. Geoscience Letters, 7(1), 8. https://doi.org/10.1186/s40562-020-00157-5

[54] Huafeng Qin, Xiang Zhao, Shuangchi Liu, et al. A newly designed demagnetization furnace for paleomagnetic thermal treatment with highly attenuated inside magnetic field intensity. ESS Open Archive. April 23, 2020.

[55] Roberts, A. P., Zhao, X., Heslop, D., Abrajevitch, A., Chen, Y.-H., Hu, P., et al. (2020). Hematite (α-Fe2O3) quantification in sedimentary magnetism: limitations of existing proxies and ways forward. Geoscience Letters, 7(1), 8. https://doi.org/10.1186/s40562-020-00157-5

[56] Gai, C., Liu, Q., Roberts, A. P., Chou, Y., Zhao, X., Jiang, Z., & Liu, J. (2020). East Asian monsoon evolution since the late Miocene from the South China Sea. Earth and Planetary Science Letters, 530, 115960. https://doi.org/10.1016/j.epsl.2019.115960

[57] Zhong, Y., Chen, Z., Hein, J. R., González, F. J., Jiang, Z., Yang, X., et al. (2020). Evolution of a deep-water ferromanganese nodule in the South China Sea in response to Pacific deep-water circulation and continental weathering during the Plio-Pleistocene. Quaternary Science Reviews, 229, 106106. https://doi.org/10.1016/j.quascirev.2019.106106

[58] Zhou, Z., Li, S., Guo, L., Li, X., Jiang, Z., Liu, Y., et al. (2020). Palaeomagnetic assessment of tectonic rotation in Northeast Asiaimplications for the coupling of intracontinental deformation and mantle convection. International Geology Review, 62(17), 2166–2188. https://doi.org/10.1080/00206814.2019.1689532

[59] Qin, H., Zhao, X., Liu, S., Paterson, G. A., Jiang, Z., Cai, S., et al. (2020). An ultra-low magnetic field thermal demagnetizer for high-precision paleomagnetism. Earth, Planets and Space, 72(1), 170. https://doi.org/10.1186/s40623-020-01304-0

[60] Ao, H., Dekkers, M. J., Roberts, A. P., Rohling, E. J., An, Z., Liu, X., et al. (2018). Mineral magnetic record of the Miocene-Pliocene climate transition on the Chinese Loess Plateau, North China. Quaternary Research, 89(3), 619–628. https://doi.org/10.1017/qua.2017.77

[61] Jin, C., Liu, Q., Liang, W., Roberts, A. P., Sun, J., Hu, P., et al. (2018). Magnetostratigraphy of the Fenghuoshan Group in the Hoh Xil Basin and its tectonic implications for India–Eurasia collision and Tibetan Plateau deformation. Earth and Planetary Science Letters, 486, 41–53. https://doi.org/10.1016/j.epsl.2018.01.010

[62] Roberts, A. P., Tauxe, L., Heslop, D., Zhao, X., & Jiang, Z. (2018). A Critical Appraisal of the “Day” Diagram. Journal of Geophysical Research: Solid Earth, 123(4), 2618–2644. https://doi.org/10.1002/2017JB015247

[63] Zhao, X., Fujii, M., Suganuma, Y., Zhao, X., & Jiang, Z. (2018). Applying the Burr Type XII Distribution to Decompose Remanent Magnetization Curves. Journal of Geophysical Research: Solid Earth, 123(10), 8298–8311. https://doi.org/10.1029/2018JB016082

[64] Cao, L., Jiang, Z.-X., Du, Y.-H., Yin, X.-M., Xi, S.-B., Wen, W., et al. (2017). Origin of Magnetism in Hydrothermally Aged 2-Line Ferrihydrite Suspensions. Environmental Science & Technology, 51(5), 2643–2651. https://doi.org/10.1021/acs.est.6b04716

[65] Liu, Z., Ma, J., Wei, G., Liu, Q., Jiang, Z., Ding, X., et al. (2017). Magnetism of a red soil core derived from basalt, northern Hainan Island, China: Volcanic ash versus pedogenesis. Journal of Geophysical Research: Solid Earth, 122(3), 1677–1696. https://doi.org/10.1002/2016JB013834

[66] Colombo, C., Palumbo, G., Di Iorio, E., Russo, F., Terribile, F., Jiang, Z., & Liu, Q. (2016). Soil development in a Quaternary fluvio-lacustrine paleosol sequence in Southern Italy. Quaternary International, 418, 195–207. https://doi.org/10.1016/j.quaint.2015.11.004

[67] Oliva-Urcia, Belén & Muñoz, Arsenio & Larasoaña, J.C. & Luzón, Aránzazu & Perez-Garcia, Antonio & González, Á & Jiang, Z. & Liu, Qingsong & Román-Berdiel, Teresa. (2016). Response of alluvial systems to Late Pleistocene climate changes recorded by environmental magnetism in the Añavieja Basin (Iberian range, NE Spain). 14. 139-154. 10.1344/GeologicaActa2016.14.2.4.

[68] Hu, P., Jiang, Z., Liu, Q., Heslop, D., Roberts, A. P., Torrent, J., & Barrón, V. (2016). Estimating the concentration of aluminum‐substituted hematite and goethite using diffuse reflectance spectrometry and rock magnetism: Feasibility and limitations. Journal of Geophysical Research: Solid Earth, 121(6), 4180–4194. https://doi.org/10.1002/2015JB012635

[69] Liu, Q., Zhang, C., Torrent, J., Barrón, V., Hu, P., Jiang, Z., & Duan, Z. (2016). Factors Controlling Magnetism of Reddish Brown Soil Profiles from Calcarenites in Southern Spain: Dust Input or In-situ Pedogenesis? Frontiers in Earth Science, 4. https://doi.org/10.3389/feart.2016.00051

[70] Jin, C., Liu, Q., Hu, P., Jiang, Z., Li, C., Han, P., et al. (2016). An integrated natural remanent magnetization acquisition model for the Matuyama‐Brunhes reversal recorded by the Chinese loess. Geochemistry, Geophysics, Geosystems, 17(8), 3150–3163. https://doi.org/10.1002/2016GC006407

[71] Liu, Q., Jin, C., Hu, P., Jiang, Z., Ge, K., & Roberts, A. P. (2015). Magnetostratigraphy of Chinese loess–paleosol sequences. Earth-Science Reviews, 150, 139–167. https://doi.org/10.1016/j.earscirev.2015.07.009

[72] Colombo, C., Palumbo, G., Di Iorio, E., Song, X., Jiang, Z., Liu, Q., & Angelico, R. (2015). Influence of hydrothermal synthesis conditions on size, morphology and colloidal properties of Hematite nanoparticles. Nano-Structures & Nano-Objects, 2, 19–27. https://doi.org/10.1016/j.nanoso.2015.07.004

[73] Su K., Liu Q., Jiang Z., & Duan Z. (2015). Mechanism of magnetic property changes of serpentinites from ODP Holes 897D and 1070A. Science China Earth Sciences, 58(5), 815–829. https://doi.org/10.1007/s11430-014-5019-9

[74] Su, Y., Chu, G., Liu, Q., Jiang, Z., Gao, X., & Haberzettl, T. (2015). A 1400 year environmental magnetic record from varved sediments of L ake X iaolongwan ( N ortheast C hina) reflecting natural and anthropogenic soil erosion. Geochemistry, Geophysics, Geosystems, 16(9), 3053–3060. https://doi.org/10.1002/2015GC005880

[75] Liu, Q., Sun, Y., Qiang, X., Tada, R., Hu, P., Duan, Z., et al. (2015). Characterizing magnetic mineral assemblages of surface sediments from major Asian dust sources and implications for the Chinese loess magnetism. Earth, Planets and Space, 67(1), 61. https://doi.org/10.1186/s40623-015-0237-8

[76] Jeong, D., Yu, Y., Liu, Q., Jiang, Z., Koh, G. W., & Koh, D. (2014). Geomagnetic field intensity determination from Pleistocene trachytic lava flows in Jeju Geopark. Geochemistry, Geophysics, Geosystems, 15(3), 516–529. https://doi.org/10.1002/2013GC005028

[77] Liu, J., Shi, X., Liu, Q., Ge, S., Liu, Y., Yao, Z., et al. (2014). Magnetostratigraphy of a greigite‐bearing core from the South Yellow Sea: Implications for remagnetization and sedimentation. Journal of Geophysical Research: Solid Earth, 119(10), 7425–7441. https://doi.org/10.1002/2014JB011206

[78] Liu, Q., Larrasoaña, J. C., Torrent, J., Roberts, A. P., Rohling, E. J., Liu, Z., & Jiang, Z. (2012). New constraints on climate forcing and variability in the circum-Mediterranean region from magnetic and geochemical observations of sapropels S1, S5 and S6. Palaeogeography, Palaeoclimatology, Palaeoecology, 333–334, 1–12. https://doi.org/10.1016/j.palaeo.2012.02.036

[79] Bailey, I., Liu, Q., Swann, G. E. A., Jiang, Z., Sun, Y., Zhao, X., & Roberts, A. P. (2011). Iron fertilisation and biogeochemical cycles in the sub-Arctic northwest Pacific during the late Pliocene intensification of northern hemisphere glaciation. Earth and Planetary Science Letters, 307(3–4), 253–265. https://doi.org/10.1016/j.epsl.2011.05.029

[80] Liu, Q., Hu, P., Torrent, J., Barrón, V., Zhao, X., Jiang, Z., & Su, Y. (2010). Environmental magnetic study of a Xeralf chronosequence in northwestern Spain: Indications for pedogenesis. Palaeogeography, Palaeoclimatology, Palaeoecology, 293(1–2), 144–156. https://doi.org/10.1016/j.palaeo.2010.05.008

[81] Liu, Q., Torrent, J., Morrás, H., Hong, A., Jiang, Z., & Su, Y. (2010). Superparamagnetism of two modern soils from the northeastern Pampean region, Argentina and its paleoclimatic indications: Superparamagnetism of Argentinian soils. Geophysical Journal International, 183(2), 695–705. https://doi.org/10.1111/j.1365-246X.2010.04786.x

[82] 李三忠,索艳慧,戴黎明,王亮亮,姜兆霞,曹现志,苏国辉,刘丽军,周建平,李玺瑶,刘洁,朱俊江,乔璐璐,王光增,姜素华,王秀娟,刘琳,管红香,李晓辉,胡军,刘鹏,刘泽,董冬冬,郭玲莉,邹志辉,董昊,钟世华,孙国正,刘洋,于胜尧,吴立新,邹卓延,孙毅. (2024). 元地球与数字孪生:思想突破、技术变革与范式转换. 地学前缘. https://doi.org/10.13745/j.esf.sf.2024.1.48

[83] 索艳慧 , 姜兆霞 , 李三忠 &  吴立新 . (2024). 海底氢气成藏模式与全球分布. 地学前缘 (04), 175-182.

[84] 李三忠, 索艳慧, 姜兆霞 &  吴立新. (2024). 氢构造与海底氢能系统. 科学通报 (32), 4696-4703.

[85] 王学婷,蒋凯,梁耀,苏柏,李建刚,郑博洋,梁文天,姜兆霞,王强,靳春胜. (2023). 东秦岭晚白垩世恐龙多样性降低的气候因素. 地球物理学报, 66(9), 3774–3788.

[86] 李三忠,刘丽军,索艳慧,李玺瑶,周洁,姜兆霞,管红香,孙国正,于雷,刘鹏,戴黎明,李晓辉,陈龙,赵彦彦,王誉桦,许博超. (2023). 碳构造:一个地球系统科学新范式. 科学通报, 68(4), 309–338.

[87] 李三忠,索艳慧,周洁,王光增,李玺瑶,姜兆霞,刘金平,刘丽军,刘永江,占华旺,姜素华,程昊皞,王鹏程,朱俊江,戴黎明,董昊,刘琳,郭晓玉. (2022). 华南洋陆过渡带构造演化:特提斯构造域向太平洋构造域的转换过程与机制. 地质力学学报, 28(5), 683–704.

[88] 张亚南,仲义,陈艇,赵德博,王敦繁,盖聪聪,姜兆霞,蒋晓东,刘青松. (2022). 北太平洋大洋钻探研究进展——古海洋与古气候. 海洋地质与第四纪地质, 42(5), 16–32.

[89] 张伟杰,盖聪聪,柳加波,姜兆霞,刘青松. (2022). 古地磁:从地球到火星. 地球科学, 47(10), 3736–3764.

[90] 李三忠,索艳慧,周洁,钟世华,孙国正,刘洁,王光增,朱俊江,姜素华,李玺瑶,郭晓玉,刘丽军,刘永江,曹现志,郭玲莉,赵淑娟,王鹏程,关庆彬,陈龙,刘勃然,周建平,姜兆霞,刘琳,曹花花,戴黎明,于胜尧,刘博,王秀娟,王程程,王玺,刘泽,管红香,李晓辉,胡军,段威,于雷,刘晓光,王誉桦,钟源,刘鹏,张文超,李洛阳,赵彦彦,许淑梅. (2022). 微板块与大板块:基本原理与范式转换. 地质学报. 96(10),3541-3558

[91] 李三忠,曹现志,王光增,刘博,李玺瑶,索艳慧,姜兆霞,郭玲莉,周洁,王鹏程,朱俊江,汪刚,赵淑娟,刘永江,张国伟. (2019). 太平洋板块中新生代构造演化及板块重建. 地质力学学报, 25(5), 642–677.

[92] 李三忠;索艳慧;王光增;姜兆霞;赵彦彦;刘一鸣;李玺瑶;郭玲莉;刘博;于胜尧;刘永江;张国伟. (2019). 海底三极与地表三极:动力学关联. 海洋地质与第四纪地质. 39(5), 1-22

[93] 李园洁,李三忠,姜兆霞,索艳慧,周在征. (2019). 海洋磁异常及其动力学. 大地构造与成矿学. 43(4), 678-699

[94] 王琬璋;周良勇;段宗奇;姜兆霞;刘建兴;刘青松.现代黄河三角洲沉积物磁性地层年代框架及环境磁学研究.地球物理学报, 2019, 62(5): 1772-1788

[95] 张斌,刘平,熊尚发,姜兆霞,吴佳斌,郭利成. (2017). 赣南晚白垩纪红层磁学研究及其地质意义. 地球物理学报. 60(12): 4709-4729

[96] 董靓雯;姚政权;石学法;姜兆霞;刘青松.渤海BH08孔磁学参数变化机制与环境指示. 地球物理学报, 2018, 61(11), 4530-45374539-4544

[97] 苏凯,刘青松,姜兆霞,段宗奇. (2015). 北大西洋ODP 897D1070A孔蛇纹岩磁性变化机制. 中国科学(地球科学). 45(4), 520-537

[98] 苏有亮,高星,刘青松,胡鹏翔,段宗奇,姜兆霞,王君波,朱立平,DOBERSCHü TZ StefanDAUT GerhardHABERZETTL Torsten. (2012). 西藏纳木错全新世沉积物的环境磁学参数变化机理. Chinese Science Bulletin, 57(31), 2980–2990.

 

数据更新时间:20250228